Neurotransmitter and receptor systems in the subthalamic nucleus

Brain Struct Funct. 2023 Sep;228(7):1595-1617. doi: 10.1007/s00429-023-02678-z. Epub 2023 Jul 21.

Abstract

The Subthalamic Nucleus (STh) is a lens-shaped subcortical structure located ventrally to the thalamus, that despite being embryologically derived from the diencephalon, is functionally implicated in the basal ganglia circuits. Because of this strict structural and functional relationship with the circuits of the basal ganglia, the STh is a current target for deep brain stimulation, a neurosurgical procedure employed to alleviate symptoms in movement disorders, such as Parkinson's disease and dystonia. However, despite the great relevance of this structure for both basal ganglia physiology and pathology, the neurochemical and molecular anatomy of the STh remains largely unknown. Few studies have specifically addressed the detection of neurotransmitter systems and their receptors within the structure, and even fewer have investigated their topographical distribution. Here, we have reviewed the scientific literature on neurotransmitters relevant in the STh function of rodents, non-human primates and humans including glutamate, GABA, dopamine, serotonin, noradrenaline with particular focus on their subcellular, cellular and topographical distribution. Inter-species differences were highlighted to provide a framework for further research priorities, particularly in humans.

Keywords: Basal ganglia; Dopamine; Neurotransmitters; Parkinson’s disease; Serotonin; Subthalamic nucleus.

Publication types

  • Review

MeSH terms

  • Animals
  • Basal Ganglia
  • Dopamine
  • Humans
  • Parkinson Disease*
  • Subthalamic Nucleus*
  • Thalamus

Substances

  • Dopamine