Jiawei Shoutai Pill promotes decidualization by regulating the SGK1/ENaC pathway in recurrent spontaneous abortion

J Ethnopharmacol. 2024 Jan 10;318(Pt A):116939. doi: 10.1016/j.jep.2023.116939. Epub 2023 Jul 20.

Abstract

Ethnopharmacological relevance: Jiawei Shoutai Pill (JWSTW) is a traditional herbal formula for recurrent spontaneous abortion (RSA). Although JWSTW significantly improves the clinical symptoms of RSA patients, its molecular mechanism remains unclear.

Aim of study: This study evaluated the expression and function of the serum/glucocorticoid regulated kinase 1/epithelial sodium channel (SGK1/ENaC) pathway and decidualization level in RSA patients and mice. It also investigated the therapeutic effects and potential mechanisms of JWSTW.

Materials and methods: 30 early RSA patients and 30 normal pregnant women undergoing induced abortion during the same period were included in the study. Decidual tissues were collected, and HE staining, immunohistochemistry, Western blot, and RT-PCR were used to detect protein and mRNA expression levels of SGK1, ENaC-a, estrogen Rreceptor β (ERβ), and progesterone receptor (PR) in patients' decidual tissues. Protein expression levels of prolactin receptor (PRLR) and insulin-like growth factor binding protein 1 (IGFBP-1) were also detected. A classical RSA mouse model was constructed, and the mice were randomly divided into four groups: normal, model, dydrogesterone (DQYT) (0.33 g/kg/d), and JWSTW (1.66 g/kg/d). The normal and model groups received the same volume of distilled water by gavage for 8 and 14 days after pregnancy. On the 14th day of pregnancy, the embryonic loss rate of each group, the number of offspring born to naturally delivered mice, and the protein or mRNA expression levels of key factors of the SGK1/ENaC pathway (SGK1, ENaC-a, ERβ, and PR), decidual proliferation marker (Ki67), mesenchymal-epithelial transition (E-cadherin and Vimentin), and decidualization markers (PRLR and IGFBP-1) in mouse decidual tissue on the eighth day of pregnancy were observed.

Results: The decidual tissue structure of RSA patients was abnormal. Immunohistochemical analysis revealed significantly reduced positive expression of SGK1, ENaC-a, ERβ, and PR proteins in the decidual tissue of RSA patients (P < 0.001). Western blot and RT-PCR analyses demonstrated significantly decreased protein and mRNA expression of SGK1, ENaC-a, ERβ, and PR in the decidual tissue of RSA patients (all P < 0.05). Additionally, protein expression of PRLR and IGFBP-1 was significantly reduced (both P < 0.001). The RSA mouse model exhibited a significant increase in embryo loss rate and decreased litter size (both P < 0.001). Treatment with DQYT and JWSTW rescued the embryo loss rate and litter size to varying extents (all P < 0.05). The protein or mRNA expression levels of SGK1, ENaC-a, ERβ, PR, Ki67, E-cadherin, vimentin, PRLR, and IGFBP-1 in RSA mice were improved to different degrees after treatment with DQYT and JWSTW (all P < 0.05).

Conclusions: Abnormal SGK1/ENaC signaling pathway regulation is closely associated with early endometrial damage in RSA patients. JWSTW promotes endometrial proliferation and mesenchymal-epithelial transition through the SGK1/ENaC signaling pathway, improving endometrial shedding. Consequently, JWSTW is a potential treatment for RSA.

Keywords: Jiawei shoutai pill; Mesenchymal-epithelial transition; SGK1/ENaC signaling pathway; recurrent spontaneous abortion.

MeSH terms

  • Abortion, Habitual*
  • Animals
  • Disease Models, Animal
  • Embryo Loss
  • Estrogen Receptor beta / metabolism
  • Estrogens
  • Female
  • Humans
  • Insulin-Like Growth Factor Binding Protein 1* / metabolism
  • Ki-67 Antigen / metabolism
  • Mice
  • Pregnancy
  • RNA, Messenger / metabolism
  • Vimentin

Substances

  • Insulin-Like Growth Factor Binding Protein 1
  • Vimentin
  • Estrogen Receptor beta
  • Ki-67 Antigen
  • Estrogens
  • RNA, Messenger