Adding Diversity to a Diruthenium Biscyclopentadienyl Scaffold via Alkyne Incorporation: Synthesis and Biological Studies

Inorg Chem. 2023 Aug 7;62(31):12453-12467. doi: 10.1021/acs.inorgchem.3c01644. Epub 2023 Jul 21.

Abstract

We report the synthesis and the assessment of the anticancer potential of two series of diruthenium biscyclopentadienyl carbonyl complexes. Novel dimetallacyclopentenone compounds (2-4) were obtained (45-92% yields) from the thermal reaction (PhCCPh exchange) of [Ru2Cp2(CO)(μ-CO){μ-η13-C(Ph)═C(Ph)C(═O)}], 1, with alkynes HCCR [R = C5H4FeCp (Fc), 3-C6H4(Asp), 2-naphthyl; Cp = η5-C5H5, Asp = OC(O)-2-C6H4C(O)Me]. Protonation of 1-3 by HBF4 afforded the corresponding μ-alkenyl derivatives 5-7, in 40-86% yields. All products were characterized by IR and NMR spectroscopy; moreover, cyclic voltammetry (1, 2, 5, 7) and single-crystal X-ray diffraction (5, 7) analyses were performed on representative compounds. Complexes 5-7 revealed a cytotoxic activity comparable to that of cisplatin in A549 (lung adenocarcinoma), SW480 (colon adenocarcinoma), and ovarian (A2780) cancer cell lines, and 2, 5, 6, and 7 overcame cisplatin resistance in A2780cis cells. Complexes 2, 5, and 7 (but not the aspirin derivative 6) induced an increase in intracellular ROS levels. Otherwise, 6 strongly stabilizes and elongates natural DNA (from calf thymus, CT-DNA), suggesting a possible intercalation binding mode, whereas 5 is less effective in binding CT-DNA, and 7 is ineffective. This trend is reversed concerning RNA, and in particular, 7 is able to bind poly(rA)poly(rU) showing selectivity for this nucleic acid. Complexes 5-7 can interact with the albumin protein with a thermodynamic signature dominated by hydrophobic interactions. Overall, we show that organometallic species based on the Ru2Cp2(CO)x scaffold (x = 2, 3) are active against cancer cells, with different incorporated fragments influencing the interactions with nucleic acids and the production of ROS.

MeSH terms

  • Adenocarcinoma*
  • Antineoplastic Agents* / chemistry
  • Cell Line, Tumor
  • Cisplatin
  • Colonic Neoplasms*
  • DNA
  • Female
  • Humans
  • Ovarian Neoplasms* / drug therapy
  • Reactive Oxygen Species

Substances

  • Cisplatin
  • Reactive Oxygen Species
  • DNA
  • Antineoplastic Agents