Bacillus Calmette-Guérin-Trained Macrophages Elicit a Protective Inflammatory Response against the Pathogenic Bacteria Brucella abortus

J Immunol. 2023 Sep 1;211(5):791-803. doi: 10.4049/jimmunol.2200642.

Abstract

The bacillus Calmette-Guérin (BCG) can elicit enhanced innate immune responses against a wide range of infections, known as trained immunity. Brucella abortus is the causative agent of brucellosis, a debilitating disease that affects humans and animals. In this study, we demonstrate that C57BL/6 mouse bone marrow-derived macrophages under BCG training enhance inflammatory responses against B. abortus. BCG-trained macrophages showed increased MHC class II and CD40 expression on the cell surface and higher IL-6, IL-12, and IL-1β production. The increase in IL-1β secretion was accompanied by enhanced activation of canonical and noncanonical inflammasome platforms. We observed elevated caspase-11 expression and caspase-1 processing in BCG-trained macrophages in response to B. abortus compared with untrained cells. In addition, these BCG-trained cells showed higher NLRP3 expression after B. abortus infection. From a metabolic point of view, signaling through the Akt/mammalian target of rapamycin/S6 kinase pathway was also enhanced. In addition, BCG training resulted in higher inducible NO synthase expression and nitrite production, culminating in an improved macrophage-killing capacity against intracellular B. abortus. In vivo, we monitored a significant reduction in the bacterial burden in organs from BCG-trained C57BL/6 mice when compared with the untrained group. In addition, previous BCG immunization of RAG-1-deficient mice partially protects against Brucella infection, suggesting the important role of the innate immune compartment in this scenario. Furthermore, naive recipient mice that received BM transfer from BCG-trained donors showed greater resistance to B. abortus when compared with their untrained counterparts. These results demonstrate that BCG-induced trained immunity in mice results in better control of intracellular B. abortus in vivo and in vitro.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • BCG Vaccine
  • Brucella abortus*
  • Brucellosis* / metabolism
  • Caspases / metabolism
  • Humans
  • Macrophages
  • Mammals
  • Mice
  • Mice, Inbred C57BL

Substances

  • BCG Vaccine
  • Caspases