Polymers with Intrinsic Microporosity as Solid Ion Conductors for Solid-State Lithium Batteries

Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202308837. doi: 10.1002/anie.202308837. Epub 2023 Aug 1.

Abstract

Solid-state electrolytes (SSEs) with high ionic conductivity and superior stability are considered to be a key technology for the safe operation of solid-state lithium batteries. However, current SSEs are incapable of meeting the requirements for practical solid-state lithium batteries. Here we report a general strategy for achieving high-performance SSEs by engineering polymers of intrinsic microporosity (PIMs). Taking advantage of the interconnected ion pathways generated from the ionizable groups, high ionic conductivity (1.06×10-3 S cm-1 at 25 °C) is achieved for the PIMs-based SSEs. The mechanically strong (50.0 MPa) and non-flammable SSEs combine the two superiorities of outstanding Li+ conductivity and electrochemical stability, which can restrain the dendrite growth and prevent Li symmetric batteries from short-circuiting even after more than 2200 h cycling. Benefiting from the rational design of SSEs, PIMs-based SSEs Li-metal batteries can achieve good cycling performance and superior feasibility in a series of withstand abuse tests including bending, cutting, and penetration. Moreover, the PIMs-based SSEs endow high specific capacity (11307 mAh g-1 ) and long-term discharge/charge stability (247 cycles) for solid-state Li-O2 batteries. The PIMs-based SSEs present a powerful strategy for enabling safe operation of high-energy solid-state batteries.

Keywords: Li-Metal Battery; Li−O2 Battery; Microporous Polymers; Solid-State Air Cathode; Solid-State Electrolyte.