Conventional photon blockade in the dispersive limit for Tavis-Cummings model

Opt Express. 2023 Jul 17;31(15):24939-24951. doi: 10.1364/OE.495358.

Abstract

In the dispersive limit, the conventional photon blockade effect cannot be realized due to the absence of photon nonlinearity. We propose a scheme to recover the photon blockade effect of the dispersive Tavis-Cummings model, which makes it possible to realize the conventional photon blockade effect in the dispersive limit. It is shown that both single-photon and two-photon blockade effects can be recovered at appropriate qubit driving strength. The optimal qubit drive strength and cavity field drive detuning are given analytically. All analyses can be verified by numerical simulation, and the strongest photon blockade effect with the largest average photon number can be produced when the single excitation resonance condition is satisfied. Moreover, we find that the achieved two-photon blockade effect is relatively robust to thermal noise. Our proposal is able to obtain single-photon sources with high purity and high brightness and has great potential for applications in quantum communication processing.