Evaluation of the endocrine activity of surface water samples using aquatic eleuthero-embryos-A comparison with in vitro assays

Water Environ Res. 2023 Aug;95(8):e10911. doi: 10.1002/wer.10911.

Abstract

Over the previous decade, numerous new approach methodologies (NAMs) have been developed and validated for the detection of endocrine activity of individual chemicals or environmental samples. These NAMs can be largely separated into three categories, in silico tools, in vitro assays, and in vivo assays using organisms or life stages not considered as laboratory animals, each with their own advantages and disadvantages. While in vitro assays provide more mechanistic information, the use of whole organisms such as fish or amphibian embryos provides a more holistic view of the net effects of an environmental sample on hormonal activity. A panel of bioassays was used to test the endocrine activity of several samples from the Danube River at Novi Sad, Serbia. The results of the in vitro assays have been published previously. Here, we present the results of the in vivo assays that were performed at the same time on the same samples. These whole organism assays are based on the use of transgenic fish and amphibian eleuthero-embryos and included the Xenopus Eleuthero-embryo Thyroid Assay (XETA), the Rapid Estrogen ACTivity In Vivo assay (REACTIV), and the Rapid Androgen Disruption Activity Reporter (RADAR) assay. Discrepancies between the different in vitro assays have previously been reported. The results of the in vivo studies also indicate discrepancies between the in vivo and in vitro data with an underestimation of the endocrine activity by the in vitro tests. Therefore, a battery of tests is advised with the initial diagnostic performed with in vivo tests to cover a wider range of modes of action and to allow the appropriate in vitro assay(s) to be selected to confirm the mode of action. PRACTITIONER POINTS: Endocrine activity was quantified in surface water using in vitro and in vivo models. The in vivo results fit with previously reported in vitro results. Higher activity was observed in water samples with in vivo models, which cover a wider range of modes of action. Endocrine activity of surface water samples may be underestimated when measured with in vitro models.

Keywords: NAM; Xenopus; endocrine disruption; medaka; new approach methodologies.

MeSH terms

  • Animals
  • Biological Assay
  • Eleutherococcus*
  • Endocrine Disruptors* / analysis
  • Endocrine Disruptors* / toxicity
  • Fishes
  • Water
  • Water Pollutants, Chemical* / analysis

Substances

  • Water Pollutants, Chemical
  • Endocrine Disruptors
  • Water

Grants and funding