Lipid droplets: a cellular organelle vital in cancer cells

Cell Death Discov. 2023 Jul 20;9(1):254. doi: 10.1038/s41420-023-01493-z.

Abstract

Lipid droplets (LDs) are cellular organelles comprising a core of neutral lipids (glycerides, sterols) encased within a single phospholipid membrane, responsible for storing surplus lipids and furnishing cellular energy. LDs engage in lipid synthesis, catabolism, and transport processes by interacting with other organelles (e.g., endoplasmic reticulum, mitochondria), and they play critical roles in regulating cellular stress and immunity. Recent research has uncovered that an elevated number of LDs is a hallmark of cancer cells, attributable to their enhanced lipid uptake and synthesis capacity, with lipids stored as LDs. Depletion of LDs in cancer cells induces apoptosis, prompting the emergence of small molecule antitumor drugs targeting LDs or key factors (e.g., FASN, SCD1) within the lipid synthesis pathway. Advancements in LD isolation and artificial synthesis have demonstrated their potential applicability in antitumor research. LDs extracted from murine adipose tissue and incubated with lipophilic antitumor drugs yield drug-coated LDs, which promote apoptosis in cancer cells. Furthermore, LDs have been employed as biological lenses to augment the resolution of subcellular structures (microfilaments, microtubules), facilitating the observation of intricate structures within thicker cells, including cancer cells. This review delineates the functional and metabolic mechanisms of LDs in cancer cells and encapsulates recent progress in LD-centered antitumor research, offering novel insights for tumor diagnosis and treatment.

Publication types

  • Review