Common Photo-oxidative Decarboxylation Mechanism in Iron Hydroxy Carboxylate Complexes

J Phys Chem A. 2023 Aug 3;127(30):6186-6190. doi: 10.1021/acs.jpca.3c02656. Epub 2023 Jul 20.

Abstract

Photochemical oxidation of dissolved organic matter is a crucial component of carbon cycling in surface waters. Photo-oxidation of iron(III)-carboxylate complexes is of particular interest because complexation with iron(III) can sensitize this functional group to photodecarboxylation. The photo-oxidation mechanism of ferrioxalate has been extensively characterized, but it is unclear whether the mechanism or timing is similar for other more complex carboxylates. In this study, we use time-resolved infrared spectroscopy to demonstrate that Fe(III)-citrate, an aliphatic carboxylate, and Fe(III)-salicylate, an aromatic carboxylate, follow the same photo-oxidation kinetics as ferrioxalate. Hence the data suggest a common mechanism for decarboxylation of iron hydroxy carbonates. Differences in the CO2 yield within 50 ps are qualitatively similar to the long-time-scale quantum yield for Fe(II) production.