New Density Matrix Renormalization Group Approaches for Strongly Correlated Systems Coupled with Large Environments

J Chem Theory Comput. 2023 Aug 8;19(15):4781-4795. doi: 10.1021/acs.jctc.2c01316. Epub 2023 Jul 20.

Abstract

Thanks to the high compression of the matrix product state (MPS) form of the wave function and the efficient site-by-site iterative sweeping optimization algorithm, the density matrix normalization group (DMRG) and its time-dependent variant (TD-DMRG) have been established as powerful computational tools in accurately simulating the electronic structure and quantum dynamics of strongly correlated molecules with a large number (101-2) of quantum degrees of freedom (active orbitals or vibrational modes). However, the quantitative characterization of the quantum many-body behaviors of realistic strongly correlated systems requires a further consideration of the interaction between the embedded active subsystem and the remaining correlated environment, e.g., a larger number (102-3) of external orbitals in electronic structure or infinite condensed-phase phononic modes in nucleus dynamics. To this end, we introduced three new post-DMRG and TD-DMRG approaches, namely (1) DMRG2sCI-MRCI and DMRG2sCI-ENPT by the reconstruction of selected configuration interaction (sCI) type of compact reference function from DMRG coefficients and the use of externally contracted MRCI (multireference configuration interaction) and Epstein-Nesbet perturbation theory (ENPT), without recourse to the expensive high order n-electron reduced density matrices (n-RDMs). (2) DMRG combined with RR-MRCI (renormalized residue-based MRCI), which improves the computational accuracy and efficiency of internally contracted (ic) MRCI by renormalizing the contracted bases with small-sized buffer environment(s) of a few external orbitals as probes based on quantum information theory. (3) HM (hierarchical mapping)-TD-DMRG in which a large environment is reduced to a small number of renormalized environmental modes (which accounts for the most vital system-environment interactions) through stepwise mapping transformation. These advances extend the efficacy of highly accurate DMRG/TD-DMRG computations to the quantitative characterization of the electronic structure and quantum dynamics in realistic strongly correlated systems coupled with large environments and are reviewed in this paper.

Publication types

  • Review