Differential Protein Expression in Response to Varlitinib Treatment in Oral Cancer Cell Line: an In Vitro Therapeutic Approach

Appl Biochem Biotechnol. 2024 Apr;196(4):2110-2121. doi: 10.1007/s12010-023-04642-3. Epub 2023 Jul 20.

Abstract

Epidermal growth factor receptor (EGFR) is the most frequently overexpressed receptor histologically exhibited by oral squamous cell carcinoma (OSCC) patients. Aberrated EGFR signaling may lead to recurrence and metastasis, thus laying the foundation of targeted therapy. Deactivating EGFR is likely to prevent downstream signaling thus resulting in apoptosis. Tyrosine kinase inhibitors (TKIs) have come into play to revert aggressiveness of OSCC. We exploited comparative proteomic analyses based on anti-EGFR potential of varlitinib, using cellular proteomes from treated and untreated groups of oral cancer cells to identify protein players functional during oral carcinogenesis. Following separation by two-dimensional electrophoresis, differentially expressed cellular proteins (varlitinib-treated and untreated cells) were analyzed and later identified using QTOF mass spectrometer. In silico analysis for protein-protein interaction was carried out using STRING. Six differentially expressed proteins were identified as binding immunoglobulin protein (BiP), heat shock protein 7 C (HSP7C), protein disulfide isomerase 1 A (PDIA1), vimentin (VIME), keratin type I cytoskeletal 14 (K1C14), and β-Actin (ACTB). Relative expression of five proteins was found to be downregulated upon varlitinib treatment, whereas only K1C14 was upregulated in treated cells compared to control. Protein network analysis depicts the interaction between BiP, PDIA1, VIME, etc. indicating their role in oral carcinogenesis. Oral cancer cells show proteome shift based on varlitinib treatment compared to corresponding controls. Our data suggest candidature of varlitinib as a potent therapeutic agent and BiP, PDIA1, HSP7C, VIME, and β-Actin as complementary/prognostic markers of OSCC.

Keywords: Oral cancer; Proteomics; Signaling pathway; Tumor marker; Varlitinib.

MeSH terms

  • Carcinoma, Squamous Cell / drug therapy
  • Carcinoma, Squamous Cell / metabolism
  • Carcinoma, Squamous Cell / pathology
  • Cell Line, Tumor
  • ErbB Receptors / metabolism
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Mouth Neoplasms* / drug therapy
  • Mouth Neoplasms* / metabolism
  • Mouth Neoplasms* / pathology
  • Neoplasm Proteins / biosynthesis
  • Neoplasm Proteins / metabolism
  • Proteomics

Substances

  • ErbB Receptors
  • Neoplasm Proteins
  • EGFR protein, human