Enabling Scalable Polymer Electrolyte with Dual-Reinforced Stable Interface for 4.5 V Lithium-Metal Batteries

Adv Mater. 2023 Nov;35(45):e2304951. doi: 10.1002/adma.202304951. Epub 2023 Oct 9.

Abstract

Hitherto, it remains a great challenge to stabilize electrolyte-electrode interfaces and impede lithium dendrite proliferation in lithium-metal batteries with high-capacity nickel-rich LiNx Coy Mn1- x-y O2 (NCM) layer cathodes. Herein, a special molecular-level-designed polymer electrolyte is prepared by the copolymerization of hexafluorobutyl acrylate and methylene bisacrylamide to construct dual-reinforced stable interfaces. Verified by X-ray photoelectron spectroscopy depth profiling, there are favorable solid electrolyte interphase (SEI) layers on Li metal anodes and robust cathode electrolyte interphase (CEI) on Ni-rich cathodes. The SEI enriched in lithiophilic N-(C)3 guides the homogenous distribution of Li+ and facilitates the transport of Li+ through LiF and Li3 N, promoting uniform Li+ plating and stripping. Moreover, the CEI with antioxidative amide groups can suppress the parasitic reactions between cathode and electrolyte and the structural degradation of cathode. Meanwhile, a unique two-stage rheology-tuning UV polymerization strategy is utilized, which is quite suited for continuous electrolyte fabrication with environmental friendliness. The fabricated polymer electrolyte exhibits a high ionic conductivity of 1.01 mS cm-1 at room temperature. 4.5 V NCM622//Li batteries achieve prolonged operation with a retention rate of 85.0% after 500 cycles at 0.5 C. This work provides new insights into molecular design and processibility design for polymer-based high-voltage batteries.

Keywords: fluorinated & nitrided; high-voltage; polymer electrolytes; rheology-tuning UV polymerization.