Stochastic thermodynamics of opinion dynamics models

Phys Rev E. 2023 Jun;107(6-1):064135. doi: 10.1103/PhysRevE.107.064135.

Abstract

We show that models of opinion formation and dissemination in a community of individuals can be framed within stochastic thermodynamics from which we can build a nonequilibrium thermodynamics of opinion dynamics. This is accomplished by decomposing the original transition rate that defines an opinion model into two or more transition rates, each representing the contact with heat reservoirs at different temperatures, and postulating an energy function. As the temperatures are distinct, heat fluxes are present even at the stationary state and linked to the production of entropy, the fundamental quantity that characterizes nonequilibrium states. We apply the present framework to a generic-vote model including the majority-vote model in a square lattice and in a cubic lattice. The fluxes and the rate of entropy production are calculated by numerical simulation and by the use of a pair approximation.