Bolus rheology of texture adjusted food-Effect of age

J Texture Stud. 2023 Dec;54(6):824-834. doi: 10.1111/jtxs.12789. Epub 2023 Jul 18.

Abstract

Swallowing disorders, or dysphagia, affect a large part of the population due to factors such as degenerative diseases, medication side effects or simply age-related impairment of physiological oropharyngeal function. The management of dysphagia is mainly handles through texture-modified foods of progressively softer, smoother, moister textures, depending on the severity of the disorder. Rheological and physiological-related properties of boluses were determined for a group of five older persons (average age, 74) for a set of texture-modified foods: bread, cheese and tomato and the combination into a sandwich. The softest class was gel food, after which came a smooth timbale; both were compared to boluses of regular food. The subjects chewed until ready to swallow, at which point the bolus was expectorated and measured regarding saliva content, linear viscoelasticity and shear viscosity. The results were compared to those of a previously studied younger group (average age, 38). The general physiological status of the subjects was determined by hand and tongue strength, diadochokinesis and one-legged standing and showed that all subjects were as healthy and fit as the younger group. Age-related properties such as one-legged standing with closed eyes and salivary flow plus bolus saliva content were lower for the older group, but the average chews-until-swallow was surprisingly also lower. Consequently, bolus modulus and viscosity were higher than for the younger group. Overall, the intended texture modification was reflected in bolus rheological and physiological-related properties. Bolus modulus, viscosity, saliva content and chews-until-swallowed all decreased from regular food to timbale food to gel food.

Keywords: bolus; dysphagia; rheology; swallowing; texture-modification.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Cheese*
  • Deglutition / physiology
  • Deglutition Disorders*
  • Humans
  • Mastication / physiology
  • Rheology