Narrowband Ultraviolet-B Persistent Luminescence in an Indoor-Lighting Environment through Energy Transfer from Host Excitons to Gd3+ Emitters in ScPO4

Inorg Chem. 2023 Jul 31;62(30):12050-12057. doi: 10.1021/acs.inorgchem.3c01558. Epub 2023 Jul 18.

Abstract

Narrowband ultraviolet-B (NB-UVB) luminescent materials are characterized by high photon energy, narrow spectral width, and visible-blind emission, thus holding great promise for photochemistry and photomedicine. However, most NB-UVB phosphors developed so far are photoluminescent, where continuous external excitation is needed. Herein, we realize NB-UVB persistent luminescence (PersL) in an indoor-lighting environment by exploiting the interaction between self-trapped/defect-trapped excitons and Gd3+ emitters in ScPO4. The phosphor shows a self-luminescing feature with a peak maximum at 313 nm with a time duration of >24 h after ceasing X-ray irradiation, which can be clearly imaged by an UVB camera in a bright environment. Spectroscopic and theoretical approaches reveal that thermo- and photo-stimulations of energies trapped at intrinsic lattice defects followed by energy transfer to Gd3+ emitters account for the emergence of the afterglow. The present results can initiate more exploration of NB-UVB PersL phosphors for emerging applications in secret optical tagging and phototherapy.