Synchronization transitions in Kuramoto networks with higher-mode interaction

Chaos. 2023 Jul 1;33(7):073138. doi: 10.1063/5.0151038.

Abstract

Synchronization is an omnipresent collective phenomenon in nature and technology, whose understanding is still elusive for real-world systems in particular. We study the synchronization transition in a phase oscillator system with two nonvanishing Fourier-modes in the interaction function, hence going beyond the Kuramoto paradigm. We show that the transition scenarios crucially depend on the interplay of the two coupling modes. We describe the multistability induced by the presence of a second coupling mode. By extending the collective coordinate approach, we describe the emergence of various states observed in the transition from incoherence to coherence. Remarkably, our analysis suggests that, in essence, the two-mode coupling gives rise to states characterized by two independent but interacting groups of oscillators. We believe that these findings will stimulate future research on dynamical systems, including complex interaction functions beyond the Kuramoto-type.