Dual Photo-Enhanced Interpenetrating Network Hydrogel with Biophysical and Biochemical Signals for Infected Bone Defect Healing

Adv Healthc Mater. 2023 Oct;12(25):e2300469. doi: 10.1002/adhm.202300469. Epub 2023 Jul 27.

Abstract

The healing of infected bone defects (IBD) is a complex physiological process involving a series of spatially and temporally overlapping events, including pathogen clearance, immunological modulation, vascularization, and osteogenesis. Based on the theory that bone healing is regulated by both biochemical and biophysical signals, in this study, a copper doped bioglass (CuBGs)/methacryloyl-modified gelatin nanoparticle (MA-GNPs)/methacrylated silk fibroin (SilMA) hybrid hydrogel is developed to promote IBD healing. This hybrid hydrogel demonstrates a dual-photocrosslinked interpenetrating network mechanism, wherein the photocrosslinked SilMA as the main network ensures structural integrity, and the photocrosslinked MA-GNPs colloidal network increases strength and dissipates loading forces. In an IBD model, the hydrogel exhibits excellent biophysical characteristics, such as adhesion, adaptation to irregular defect shapes, and in situ physical reinforcement. At the same time, by sequentially releasing bioactive ions such as Cu2+ , Ca2+ , and Si2+ ions from CuBGs on demand, the hydrogel spatiotemporally coordinates antibacterial, immunomodulatory and bone remodeling events, efficiently removing infection and accelerating bone repair without the use of antibiotics or exogenous recombinant proteins. Therefore, the hybrid hydrogel can be used as a simple and effective method for the treatment of IBD.

Keywords: antibacterial materials; bioactive ions; hybrid hydrogels; immunomodulation; spatiotemporal regulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fibroins* / chemistry
  • Hydrogels* / chemistry
  • Ions / pharmacology
  • Osteogenesis
  • Wound Healing

Substances

  • Hydrogels
  • Fibroins
  • Ions