Intramolecular hole-transfer in protonated anthracene

Phys Chem Chem Phys. 2023 Jul 26;25(29):19524-19531. doi: 10.1039/d3cp02922k.

Abstract

Excitation spectra of protonated and deuteronated anthracene are obtained by triple-resonance dissociation spectroscopy. Very cold cations, protonated/deuteronated exclusively at the 9-position, are generated from two-colour two-photon threshold ionisation of 9-dihydroanthracenyl radicals (C14H11). The excitation spectra reveal rich structure, not resolved in previous studies, that is assigned based on anharmonic and Herzberg-Teller coupling calculations. This work reveals that the excitation of protonated anthracene induces a symmetry-breaking intramolecular charge-transfer process along a Marcus-Hush coordinate, where the positively charged hole hops from the central bridging sp2 carbon, onto one of the aromatic rings. Signatures of this charge-transfer event are observed in the excitation spectrum, through active Herzberg-Teller progressions.