Evaluating the induced photon contamination by different breast IOERT shields using Monte Carlo simulation

J Appl Clin Med Phys. 2023 Nov;24(11):e14098. doi: 10.1002/acm2.14098. Epub 2023 Jul 18.

Abstract

Background and objective: Avoiding the underlying healthy tissue over-exposure during breast intraoperative electron radiotherapy (IOERT) is owing to the use of some dedicated radioprotection disks during patient irradiation. The originated contaminant photons from some widely used double-layered shielding disks including PMMA+Cu, PTFE+steel, and Al+Pb configurations during the breast IOERT have been evaluated through a Monte Carlo (MC) simulation approach.

Methods: Produced electron beam with energies of 6, 8, 10, and 12 MeV by a validated MC model of Liac12 dedicated IOERT accelerator was used for disk irradiations. Each of above-mentioned radioprotection disks was simulated inside a water phantom, so that the upper disk surface was positioned at R90 depth of each considered electron energy. Simulations were performed by MCNPX (version 2.6.0) MC code. Then, the energy spectra of the contaminant photons at different disk surfaces (upper, middle, and lower one) and relevant contaminant dose beneath the studied disks were determined and compared.

Results: None of studied shielding disks show significant photon contamination up to 10 MeV electron energy, so that the induced photon dose by the contaminant X-rays was lower than those observed in the disk absence under the same conditions. In return, the induced photon dose at a close distance to the lower disk surface exceeded from calculated values in the disk absence at 12 MeV electron energy. The best performance in contaminant dose reduction at the energy range of 6-10 MeV belonged to the Al+Pb disk, while the PMMA+Cu configuration showed the best performance in this regard at 12 MeV energy.

Conclusion: Finally, it can be concluded that all studied shielding disks not only don't produce considerable photon contamination but also absorb the originated X-rays from electron interactions with water at the electron energy range of 6-10 MeV. The only concern is related to 12 MeV energy where the induced photon dose exceeds the dose values in the disk absence. Nevertheless, the administered dose by contaminant photons to underlying healthy tissues remains beneath the tolerance dose level by these organs at the entire range of studied electron energies.

Keywords: Monte Carlo simulation; breast cancer; electron beam; intraoperative radiotherapy; photon contamination; radioprotection disk.

MeSH terms

  • Electrons*
  • Humans
  • Lead*
  • Monte Carlo Method
  • Photons
  • Polymethyl Methacrylate
  • Radiometry
  • Radiotherapy Dosage
  • Water

Substances

  • Lead
  • Polymethyl Methacrylate
  • Water