SARS-CoV-2 Spike Protein Mutations in Different Variants: A Comparison Between Vaccinated and Unvaccinated Population in Western Amazonia

Bioinform Biol Insights. 2023 Jul 14:17:11779322231186477. doi: 10.1177/11779322231186477. eCollection 2023.

Abstract

The increased transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated variants of concern (VOCs) throughout the pandemic, responsible for waves of cases worldwide. To monitor mutations in the S gene of SARS-CoV-2 in different variants, we evaluated 1497 individuals with COVID-19 in western Amazonia in the period April 2021 to July 2022. The epidemiological and clinical data of the individuals were collected; subsequently, the samples were extracted using a commercial kit, the viral load was assessed, and viral genomes were sequenced. We analyzed the quality and mutations of the genomes and maximum likelihood phylogenetic inference. However, 3 main clusters were observed, referring to Gamma (52.91%), Delta (24.38%), and Omicron (20.38%) VOCs with wide distribution in all health regions of the Rondônia state. Regarding the vaccination profile, there was a higher percentage of unvaccinated and partially vaccinated individuals, with more representatives by the Gamma variant. A total of 1412 sequences were suitable for mutation analysis in the S gene region. The Omicron VOC showed 38 mutations, with the Delta and Gamma variants with 16 and 17, respectively. The VOC Omicron and Gamma shared 4 mutations E484K, H655Y, N501Y, and N679K with high frequency, and Delta and Omicron 2 mutations (T478K and T95I). Regarding the comparison between the frequency of mutations for each variant concerning the vaccination groups, there were no changes in mutations for each group. In conclusion, the study showed a temporal increase in mutations and subvariants for characterized strains. Furthermore, the vaccination profile did not impact significant changes in the mutational profile yet remains a determining factor for severe disease.

Keywords: SARS-CoV-2; mutations; sequences; vaccination; variants.