Cell Lineage-Guided Microanalytical Mass Spectrometry Reveals Increased Energy Metabolism and Reactive Oxygen Species in the Vertebrate Organizer

bioRxiv [Preprint]. 2023 Jul 9:2023.07.07.548174. doi: 10.1101/2023.07.07.548174.

Abstract

Molecular understanding of the vertebrate Organizer, a tissue center critical for inductive signaling during gastrulation, has so far been limited to transcripts and some proteins due to limitations in detection and sensitivity. The Spemann-Mangold Organizer (SMO) in the South African Clawed Frog ( X. laevis ), a popular model of development, has long been discovered to induce the patterning of the central nervous system. Molecular screens on the tissue have identified several genes, such as goosecoid, chordin, and noggin, with independent ability to establish a body axis. A comprehensive study of proteins and metabolites produced in the SMO and their functional roles has been lacking. Here, we pioneer a deep discovery proteomic and targeted metabolomic screen of the SMO in comparison to the rest of the embryo using liquid chromatography high-resolution mass spectrometry (HRMS). Quantification of ∼4,600 proteins and a panel of metabolites documented differential expression for ∼450 proteins and multiple intermediates of energy metabolism in the SMO. Upregulation of oxidative phosphorylation (OXPHOS) and redox regulatory proteins gave rise to elevated oxidative stress and an accumulation of reactive oxygen species in the Organizer. Imaging experiments corroborated these findings, discovering enrichment of hydrogen peroxide in the SMO tissue. Chemical perturbation of the redox gradient affected mesoderm involution during early tissue movements of gastrulation. HRMS expands the bioanalytical toolbox of cell and developmental biology, providing previously unavailable information on molecular classes to challenge and refine our classical understanding of the Organizer and its function during early patterning of the embryo.

Publication types

  • Preprint