Three small partner proteins facilitate the type VII-dependent secretion export of an antibacterial nuclease

bioRxiv [Preprint]. 2023 Jun 8:2023.04.01.535202. doi: 10.1101/2023.04.01.535202.

Abstract

The type VIIb protein secretion system (T7SSb) plays a role in interbacterial competition in Gram-positive Firmicute bacteria and secretes various toxic effector proteins. The mechanism of secretion and the roles of numerous conserved genes within T7SSb gene clusters remain unknown. EsaD is a nuclease toxin secreted by the Staphylococcus aureus T7SSb, which forms a complex with its cognate immunity protein, EsaG, and chaperone EsaE. Encoded upstream of EsaD are three small secreted proteins, EsxB, EsxC and EsxD. Here we show that EsxBCD bind to the transport domain of EsaD and function as EsaD export factors. We report the first structural information for a complete T7SSb substrate pre-secretion complex. Cryo-EM of the EsaDEG trimer and the EsaDEG-EsxBCD hexamer shows that incorporation of EsxBCD confers a conformation comprising a flexible globular cargo domain attached to a long narrow shaft that is likely to be crucial for efficient toxin export.

Keywords: Staphylococcus aureus; Type VII secretion system; effector protein; nuclease toxin; pre-secretion complex.

Publication types

  • Preprint