Macrofungi promote SOC decomposition and weaken sequestration by modulating soil microbial function in temperate steppe

Sci Total Environ. 2023 Nov 15:899:165556. doi: 10.1016/j.scitotenv.2023.165556. Epub 2023 Jul 15.

Abstract

Soil organic carbon (SOC) sequestration is a key grassland ecosystem function, and the magnitude of SOC reservoirs depends on microbial involvement, especially that of fungi. Mycelia developed by macrofungi potentially influence carbon (C) fixation and decomposition; however, the mechanisms underlying their effects on SOC storage in grassland ecosystems remain poorly understood. The fairy rings formed by macrofungi in grasslands are natural platform for exploring macrofungal effects on SOC. In this study, we collected topsoil (0-10 cm) from four different fairy ring zones in a temperate steppe to reveal the macrofungal effects on SOC fractions, including particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), and the SOC storage microbial mechanism using metagenomic sequencing technology. Both POC and MAOC decreased after macrofungal passage, resulting in a 7.37 % reduction in SOC. Macrofungal presence reduced microbial biomass carbon (MBC), but significantly enhanced the β-1,4-glucosidase (BG) activity, which increased dissolved organic carbon (DOC). In addition, the abundance of copiotrophs (Proteobacteria and Bacteroidetes) with lower C metabolic rates increased, and that of oligotrophs (Actinobacteria, Acidobacteria, Chloroflexi, and Verrucomicrobia) with higher substrate utilization efficiency decreased in the presence of macrofungi. This may further promote SOC decomposition. Correspondingly, there was a lower abundance of C-fixation genes but more C-degradation genes (especially hemicellulosic degradation genes) during macrofungal passage. Our results indicate that the presence of macrofungi can modulate the soil microbial community and functional genes to reduce SOC storage by inhibiting microbial C sequestration while promoting C decomposition in grassland ecosystems. These findings refine our mechanistic understanding of SOC persistence through the interactions between macrofungi and other microbes.

Keywords: Extracellular enzyme activity; Functional genes; Microbial community; SOC fractions; Soil carbon storage.

MeSH terms

  • Biomass
  • Carbon / metabolism
  • Carbon Sequestration
  • Microbiota*
  • Soil Microbiology
  • Soil* / chemistry

Substances

  • Soil
  • Carbon