Microbial and enzymatic changes in cigar tobacco leaves during air-curing and fermentation

Appl Microbiol Biotechnol. 2023 Sep;107(18):5789-5801. doi: 10.1007/s00253-023-12663-5. Epub 2023 Jul 17.

Abstract

Metabolic enzyme activity and microbial composition of the air-curing and fermentation processes determine the quality of cigar tobacco leaves (CTLs). In this study, we reveal the evolution of the dominant microorganisms and microbial community structure at different stages of the air-curing and fermentation processes of CTLs. The results showed that the changes in metabolic enzymes occurred mainly during the air-curing phase, with polyphenol oxidase (PPO) being the most active at the browning phase. Pseudomonas, Bacteroides, Vibrio, Monographella, Bipolaris, and Aspergillus were the key microorganisms in the air-curing and fermentation processes. Principal coordinate analysis revealed significant separation of microbial communities between the air-curing and fermentation phases. Redundancy analysis showed that bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota were correlated with enzyme activity and temperature and humidity. Bacteria mainly act in sugar metabolism, lipid metabolism, and amino acid metabolism, while fungi mainly degrade lignin, cellulose, and pectin through saprophytic action. Spearman correlation network analysis showed that Firmicutes, Proteobacteria, and Actinobacteria were the key bacterial taxa, while Dothideomycetes, Sordariomycetes, and Eurotiomycetes were the key fungal taxa. This research provides the basis for improving the quality of cigars by improving the air-curing and fermentation processes. KEY POINTS: • Changes in POD and PPO activity control the color change of CTLs at the air-curing stage. • Monographella, Aspergillus, Pseudomonas, and Vibrio play an important role in air-curing and fermentation. • Environmental temperature and humidity mainly affect the fermentation process, whereas bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota are associated with enzyme activity and temperature and humidity.

Keywords: Air-curing; Cigar tobacco leaf; Enzyme activity; Fermentation; Microbial community.

MeSH terms

  • Acidobacteria
  • Ascomycota*
  • Bacteria
  • Bacteroidetes
  • Fermentation
  • Firmicutes
  • Nicotiana / microbiology
  • Plant Leaves / microbiology
  • Proteobacteria
  • Tobacco Products*