Review of 5-FU resistance mechanisms in colorectal cancer: clinical significance of attenuated on-target effects

Cancer Drug Resist. 2023 Apr 29;6(2):257-272. doi: 10.20517/cdr.2022.136. eCollection 2023.

Abstract

The emergence of chemoresistant disease during chemotherapy with 5-Fluorouracil-based (5-FU-based) regimens is an important factor in the mortality of metastatic CRC (mCRC). The causes of 5-FU resistance are multi-factorial, and besides DNA mismatch repair deficiency (MMR-D), there are no widely accepted criteria for determining which CRC patients are not likely to be responsive to 5-FU-based therapy. Thus, there is a need to systematically understand the mechanistic basis for 5-FU treatment failure and an urgent need to develop new approaches for circumventing the major causes of 5-FU resistance. In this manuscript, we review mechanisms of 5-FU resistance with an emphasis on: (1) altered anabolic metabolism limiting the formation of the primary active metabolite Fluorodeoxyuridylate (5-Fluoro-2'-deoxyuridine-5'-O-monophosphate; FdUMP); (2) elevated expression or activity of the primary enzymatic target thymidylate synthase (TS); and (3) dysregulated programmed cell death as important causes of 5-FU resistance. Importantly, these causes of 5-FU resistance can potentially be overcome through the use of next-generation fluoropyrimidine (FP) polymers (e.g., CF10) that display reduced dependence on anabolic metabolism and more potent TS inhibitory activity.

Keywords: 5-FU resistance; Fluoropyrimidine; chemotherapy; colorectal cancer; precision medicine; thymidylate synthase.

Publication types

  • Review