Realization of Quantum Secure Direct Communication with Continuous Variable

Research (Wash D C). 2023 Jul 14:6:0193. doi: 10.34133/research.0193. eCollection 2023.

Abstract

With the progress of theoretical and applied technologies, the communication system based on the classical encryption is seriously threatened by quantum computing and distributed computing. A communication method that directly loads confidential information on the quantum state, quantum secure direct communication (QSDC), came into being for resisting security threats. Here, we report the first continuous-variable QSDC (CV-QSDC) experimental demonstration for verifying the feasibility and effectiveness of the CV-QSDC protocol based on Gaussian mapping and propose a parameter estimation for signal classification under the actual channels. In our experiment, we provided 4 × 102 blocks, where each block contains 105 data for direct information transmission. For the transmission distance of 5 km in our experiment, the excess noise is 0.0035 SNU, where SNU represents the unit of shot-noise units. The 4.08 × 105 bit per second experimental results firmly demonstrated the feasibility of CV-QSDC under the fiber channel. The proposed grading judgment method based on parameter estimation provides a practical and available message processing scheme for CV-QSDC in a practical fiber channel and lays the groundwork for the grading reconciliation.