Exploration and optimization of extraction, analysis and data normalization strategies for mass spectrometry-based DNA adductome mapping and modeling

Anal Chim Acta. 2023 Sep 15:1274:341578. doi: 10.1016/j.aca.2023.341578. Epub 2023 Jun 29.

Abstract

Although interest in characterizing DNA damage by means of DNA adductomics has substantially grown, the field of DNA adductomics is still in its infancy, with room for optimization of methods for sample analysis, data processing and DNA adduct identification. In this context, the first objective of this study was to evaluate the use of hydrophilic interaction (HILIC) vs. reversed phase liquid chromatography (RPLC) coupled to high resolution mass spectrometry (HRMS) and thermal acidic vs. enzymatic hydrolysis of DNA followed by DNA adduct purification and enrichment using solid-phase extraction (SPE) or fraction collection for DNA adductome mapping. The second objective was to assess the use of total ion count (TIC) and median intensity (MedI) normalization compared to QC (quality control), iQC (internal QC) and quality control-based robust locally estimated scatterplot smoothing (LOESS) signal correction (QC-RLSC) normalization for processing of the acquired data. The results demonstrate that HILIC compared to RPLC allowed better modeling of the tentative DNA adductome, particularly in combination with thermal acidic hydrolysis and SPE (more valid models, with an average Q2(Y) and R2(Y) of 0.930 and 0.998, respectively). Regarding the need for data normalization and the management of (limited) system instability and signal drift, QC normalization outperformed TIC, MedI, iQC and LOESS normalization. As such, QC normalization can be put forward as the default data normalization strategy. In case of momentous signal drift and/or batch effects however, comparison to other normalization strategies (like e.g. LOESS) is recommended. In future work, further optimization of DNA adductomics may be achieved by merging of HILIC and RPLC datasets and/or application of 2D-LC, as well as the inclusion of Schiff base stabilization and/or fraction collection in the thermal acidic hydrolysis-SPE sample preparation workflow.

Keywords: DNA adduct purification; Discriminant analysis; Hydrophilic interaction liquid chromatography; Normalization; Reversed phase liquid chromatography.

MeSH terms

  • Chromatography, Reverse-Phase* / methods
  • DNA Adducts*
  • Hydrolysis
  • Hydrophobic and Hydrophilic Interactions
  • Mass Spectrometry / methods

Substances

  • DNA Adducts