The SlARF4-SlHB8 regulatory module mediates leaf rolling in tomato

Plant Sci. 2023 Oct:335:111790. doi: 10.1016/j.plantsci.2023.111790. Epub 2023 Jul 15.

Abstract

Leaf is the main photosynthetic organ in plants and the primary energy source all along the plant life. Given the beneficial role of leaf rolling in improving photosynthetic efficiency and yield in specific environmental conditions, a better understanding of the factors and molecular mechanisms underlying this process is highly suited. Previously, the SlARF4 knocking out mutant exhibited upward curly leaf showed higher resistance to water deficit which driving us to uncover the function of SlARF4 in regulating the curly leaf formation. In this study, we unraveled the unexplored role of the SlARF4-SlHB8 module of transcription factors in the development of leaf rolling. Both SlARF4 loss-of-function and SlHB8 overexpressing tomato plants exhibited upward-rolled leaves, reflecting the active role of the two genes in controlling leaf rolling. Dual-luciferase reporter assays and phenotypic analysis of hybrid progenies suggested that SlHB8 acts downstream of SlARF4 in curly leaf formation. SlARF4 and SlHB8 influence the development of leaf palisade tissues via modulating the expression of genes associated with curly leaf formation. SEM analysis revealed no significant differences in leaf epidermal cells between the two leaf-rolling mutants and the wild type, indicating that curly leaves of arf4 and SlHB8-OE do not result from the asymmetric leaf epidermal cell growth. Our data provide novel insight into the molecular mechanism of abaxial-adaxial determination involving SlARF4 and SlHB8 and reveals that leaf rolling operates via different regulation mechanisms in tomato and Arabidopsis model plant.

Keywords: Leaf rolling; SlARF4; SlHB8; Transcriptional regulation.

MeSH terms

  • Arabidopsis* / metabolism
  • Gene Expression Regulation, Plant
  • Phenotype
  • Plant Leaves / metabolism
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Solanum lycopersicum* / genetics
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Plant Proteins
  • Transcription Factors