Pseudo-Goldstone Modes and Dynamical Gap Generation from Order by Thermal Disorder

Phys Rev Lett. 2023 Jun 30;130(26):266702. doi: 10.1103/PhysRevLett.130.266702.

Abstract

Accidental ground state degeneracies-those not a consequence of global symmetries of the Hamiltonian-are inevitably lifted by fluctuations, often leading to long-range order, a phenomenon known as "order-by-disorder" (ObD). The detection and characterization of ObD in real materials currently lacks clear, qualitative signatures that distinguish ObD from conventional energetic selection. We show that for order by thermal disorder (ObTD) such a signature exists: a characteristic temperature dependence of the fluctuation-induced pseudo-Goldstone gap. We demonstrate this in a minimal two-dimensional model that exhibits ObTD, the ferromagnetic Heisenberg-compass model on a square lattice. Using spin-dynamics simulations and self-consistent mean-field calculations, we determine the pseudo-Goldstone gap, Δ, and show that at low temperatures it scales as the square root of temperature, sqrt[T]. We establish that a power-law temperature dependence of the gap is a general consequence of ObTD, showing that all key features of this physics can be captured in a simple model of a particle moving in an effective potential generated by the fluctuation-induced free energy.

MeSH terms

  • Cold Temperature*
  • Physics*
  • Temperature