Random number generation using spontaneous symmetry breaking in a Kerr resonator

Opt Lett. 2023 Jul 15;48(14):3741-3744. doi: 10.1364/OL.493731.

Abstract

We demonstrate an all-optical random number generator based on spontaneous symmetry breaking in a coherently driven Kerr resonator. Random bit sequences are generated by repeatedly tuning a control parameter across a symmetry-breaking bifurcation that enacts random selection between two possible steady-states of the system. Experiments are performed in a fiber ring resonator, where the two symmetry-broken steady-states are associated with orthogonal polarization modes. Detrimental biases due to system asymmetries are suppressed by leveraging a recently discovered self-symmetrization phenomenon that ensures the symmetry-breaking dynamics act as an unbiased coin toss, with a genuinely random selection between the two available steady-states. We optically generate bits at a rate of 3 MHz without post-processing and verify their randomness using the National Institute of Standards and Technology and Dieharder statistical test suites.