Molecular-Additive-Assisted Tellurium Homogenization in ZnSeTe Quantum Dots

Adv Mater. 2023 Nov;35(45):e2303528. doi: 10.1002/adma.202303528. Epub 2023 Oct 2.

Abstract

Addition of aqueous hydrohalic acids during the synthesis of colloidal quantum dots (QDs) is widely employed to achieve high-quality QDs. However, this reliance on the use of aqueous solutions is incompatible with oxygen- and water-sensitive precursors such as those used in the synthesis of Te-alloyed ZnSe QDs. Herein, it is shown that this incompatibility leads to phase segregation into Te-rich and Te-poor regions, causing spectral broadening and luminescence peak shifting under high laser irradiation and applied electrical bias. Here, a synthetic strategy to produce anhydrous-HF in situ by using benzenecarbonyl fluoride (BF) as a chemical additive is reported. Through in situ 19 F NMR spectroscopy, it is found that BF reacts with surfactants in tandem, ultimately producing intermediary F···H···trioctylamine adducts. These act as a pseudo-HF source that releases anhydrous HF. The controlled release of HF during nucleation and growth steps homogenizes Te distribution in ZnSeTe lattice, leading to spectrally stable blue-emitting QDs under increasing laser flux from ≈3 µW to ≈12 mW and applied bias from 2.6 to 10 V. Single-dot photoluminescence (PL) spectroscopy and analyses of the absorption, PL and transient absorption spectra together with density functional theory point to the role of anhydrous HF as a Te homogenizer.

Keywords: Te-alloyed ZnSe; anhydrous acids; blue emission; colloidal quantum dots; phase segregation.