Multi-scale simulations of the mechanical behaviors of the W-Cu joint interface with a diffusion layer

J Mol Model. 2023 Jul 14;29(8):247. doi: 10.1007/s00894-023-05633-1.

Abstract

Context: At the interface of W-Cu after direct jointing, diffusion layers with a thickness of approximately 22 nm are present but often overlooked in simulations of mechanical properties. In this study, an interface model with a W-Cu diffusion layer is developed using molecular dynamics (MD). The effects of the diffusion layers on the elastic-plastic behaviors, dissipation mechanisms, and fracture properties of the interface are analyzed under mode-I (perpendicular to the interface) and mode-II (parallel to the interface). The results demonstrate that the interface model with a diffusion layer exhibits superior mechanical properties under mode-I and mode-II loading compared to the model without a diffusion layer. Furthermore, a multi-scale method based on the classical Paris law is proposed, combining MD and finite element methods to investigate the fatigue crack propagation of W-Cu bimetallic composites under cyclic loading and predict their fatigue life. The findings of this study are meaningful for improving the mechanical properties of W-Cu interface materials, predicting the material's lifespan, and guiding related engineering applications.

Methods: In this study, the molecular dynamics simulations have been carried out by using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The visualization of results is performed using the Open Visualization Tool (OVITO). Common neighbor analysis (CNA) and dislocation analysis (DXA) in OVITO have been employed to capture the structural evolution. Finite element method simulations are performed in Ansys Workbench.

Keywords: Diffusion layer; Fatigue crack; Mode-I; Mode-II; Multi-scale simulations; W-Cu.