The study of an anoikis-related signature to predict glioma prognosis and immune infiltration

J Cancer Res Clin Oncol. 2023 Nov;149(14):12659-12676. doi: 10.1007/s00432-023-05138-7. Epub 2023 Jul 14.

Abstract

Background: Gliomas are the most common highly aggressive primary malignant brain tumors in adults with different biological behaviors and clinically heterogeneous features. About the extremely poor prognosis of gliomas, the search for potential therapeutic modalities and targets is crucial.

Method: We extracted the anoikis-related genes (ARG) from GeneCards and obtained differentially expressed genes in normal and glioma tissues from the GSE4290 dataset to obtain intersect differentially expressed ARG in gliomas by differential analysis. KEGG and GO analyses were used to evaluate the potential pathways and molecular processes of these genes. Based on The Cancer Genome Atlas (TCGA) training cohort, we performed the Least Absolute Shrinkage and Selection Operator (LASSO) regression and Cox regression to construct an ARG prognostic model and validated them in the TCGA testing cohort and the Chinese Glioma Genome Atlas (CGGA) validation cohort. Subsequently, we further explored the differences in clinical characteristics, tumor mutation burden (TMB), and the immune microenvironment in the high- and low-risk groups. Univariate and multifactorial regression analyses and nomogram construction were also performed. Moreover, we evaluated the expression levels of key genes via public databases, qPCR analysis and IHC staining, and further assessed the clinical prognostic value.

Results: The regulatory model based on quantitative ARG prognostic models showed that patients in the high-risk group were associated with poorer survival prognosis, poorer clinical characteristics, and higher TMB levels. Moreover, the high-risk group had high levels of immune infiltration and upregulated immune checkpoint gene expression. The ARG prognostic model and the Nomogram showed good predictive performance. Expression and survival analysis of five prognostic ARG signatures (ETV4, HMOX1, MYC, NFE2L2, and UBE2C) showed that these genes have potential prognostic value.

Conclusion: Our constructed ARG prognostic risk model provides a potential therapeutic target and theoretical basis for predicting the prognosis of glioma patients and guiding individualized immunotherapy.

Keywords: Anoikis-related genes; Glioma; Immune checkpoint; Immune microenvironment; Prognostic model.