Poor Outcome in Postpartum Breast Cancer Patients Is Associated with Distinct Molecular and Immunologic Features

Clin Cancer Res. 2023 Sep 15;29(18):3729-3743. doi: 10.1158/1078-0432.CCR-22-3645.

Abstract

Purpose: Patients with postpartum breast cancer diagnosed after cessation of breastfeeding (postweaning, PP-BCPW) have a particularly poor prognosis compared with patients diagnosed during lactation (PP-BCDL), or to pregnant (Pr-BC) and nulliparous (NP-BC) patients, regardless of standard prognostic characteristics. Animal studies point to a role of the involution process in stimulation of tumor growth in the mammary gland. However, in women, the molecular mechanisms that underlie this poor prognosis of patients with PP-BCPW remain vastly underexplored, due to of lack of adequate patient numbers and outcome data.

Experimental design: We explored whether distinct prognostic features, common to all breast cancer molecular subtypes, exist in postpartum tumor tissue. Using detailed breastfeeding data, we delineated the postweaning period in PP-BC as a surrogate for mammary gland involution and performed whole transcriptome sequencing, immunohistochemical, and (multiplex) immunofluorescent analyses on tumor tissue of patients with PP-BCPW, PP-BCDL, Pr-BC, and NP-BC.

Results: We found that patients with PP-BCPW having a low expression level of an immunoglobulin gene signature, but high infiltration of plasma B cells, have an increased risk for metastasis and death. Although PP-BCPW tumor tissue was also characterized by an increase in CD8+ cytotoxic T cells and reduced distance among these cell types, these parameters were not associated with differential clinical outcomes among groups.

Conclusions: These data point to the importance of plasma B cells in the postweaning mammary tumor microenvironment regarding the poor prognosis of PP-BCPW patients. Future prospective and in-depth research needs to further explore the role of B-cell immunobiology in this specific group of young patients with breast cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms*
  • Female
  • Humans
  • Lactation
  • Postpartum Period*
  • Pregnancy
  • Prognosis
  • Tumor Microenvironment / genetics