Development, validation and analysis of a human profurin 3D model using comparative modeling and molecular dynamics simulations

J Biomol Struct Dyn. 2023 Jul 14:1-19. doi: 10.1080/07391102.2023.2231546. Online ahead of print.

Abstract

The emergence of new viruses can lead to the outbreak of pandemics as occurred at the end of 2019 with the coronavirus disease (or COVID-19). The fastest way to effectively control viral infections is to develop broad-spectrum antivirals that can fight at least an entire class of viruses. Profurin, the furin precursor propeptide, is responsible for the autoactivation step which is crucial for the maturation of several viral substrates. This role makes the study of furin and profurin interactions interesting for the development of new potential broad-spectrum antivirals for the treatment against several human viral diseases. Since there is no 3D model of profurin published in the literature or deposited in a database, this work reports the development, validation and analysis of a profurin 3D model using comparative modeling and molecular dynamics. The model is available in ModelArchive at https://www.modelarchive.org/doi/10.5452/ma-ct8l7. The usage of this model will make possible further studies of molecular docking and MD simulations of the profurin-furin system, in the design of new potential broad-spectrum antivirals for the treatment against several human viral diseases.Communicated by Ramaswamy H. Sarma.

Keywords: Profurin; broad spectrum antivirals; comparative modeling; force fields; molecular dynamics; viral infections.