Characterization of the complete mitochondrial genome of the longhorn beetle, Batocerahorsfieldi (Coleoptera, Cerambycidae) and its phylogenetic analysis with suitable longhorn beetles

Zookeys. 2023 Jul 4:1168:387-402. doi: 10.3897/zookeys.1168.105328. eCollection 2023.

Abstract

Mitochondrial genome analysis is an important tool for studying insect phylogenetics. The longhorn beetle, Batocerahorsfieldi, is a significant pest in timber, economic and protection forests. This study determined the mitochondrial genome of B.horsfieldi and compared it with the mitochondrial genomes of other Cerambycidae with the aim of exploring the phylogenetic status of the pest and the evolutionary relationships among some Cerambycidae subgroups. The complete mitochondrial genome of B.horsfieldi was sequenced by the Illumina HiSeq platform. The mitochondrial genome was aligned and compared with the existing mitochondrial genomes of Batoceralineolata and B.rubus in GenBank (MF521888, MW629558, OM161963, respectively). The secondary structure of transfer RNA (tRNA) was predicted using tRNAScan-SE server v.1.21 and MITOS WebSever. Thirteen protein-coding genes (PCGs) and two ribosomal RNA gene sequences of 21 longhorn beetles, including B.horsfieldi, plus two outgroups, Dryopsernesti (Dryopidae) and Heterocerusparallelus (Heteroceridae), were analyzed. The phylogenetic tree was constructed using maximum likelihood and Bayesian inference methods. In this study, we successfully obtained the complete mitochondrial genome of B.horsfieldi for the first time, which is 15 425 bp in length. It contains 37 genes and an A + T-rich region, arranged in the same order as the recognized ancestor of longhorn beetles. The genome of B.horsfieldi is composed of 33.12% A bases, 41.64% T bases, 12.08% C bases, and 13.16% G bases. The structure, nucleotide composition, and codon usage of the new mitochondrial genome are not significantly different from other longhorn mitochondrial genomes. Phylogenetic analyses revealed that Cerambycidae formed a highly supported single clade, and Vesperidae was either clustered with Cerambycidae or formed a separate clade. Interestingly, B.horsfieldi, B.rubus and B.lineolata were clustered with Monochamus and Anoplophora species in both analyses, with high node support. Additionally, the VesperidaeSpiniphilusspinicornis and Vesperussanzi and the 19 Cerambycidae species formed a sister clade in the Bayesian analysis. Our results have produced new complete mitogenomic data, which will provide information for future phylogenetic and taxonomic research, and provide a foundation for future relevant research.

Keywords: Evolutionary relationships; mitogenome; pest species; protein-coding genes; ribosomal RNA genes; secondary structure; tRNA.

Grants and funding

This work was funded by the Ministry of Science and Technology of the People’s Republic of China Support Program (2022YFE0115200), Sichuan Province Science and Technology Support Program (2022NSFSC0986) and China West Normal University Support Program (20A007, 20E051, 21E040, and 22kA011).