Liquid Mixing on Falling Films: Marker-Free, Molecule-Sensitive 3D Mapping Using Raman Imaging

Sensors (Basel). 2023 Jun 23;23(13):5846. doi: 10.3390/s23135846.

Abstract

Following up on a proof of concept, this publication presents a new method for mixing mapping on falling liquid films. On falling liquid films, different surfaces, plain or structured, are common. Regarding mixing of different components, the surface has a significant effect on its capabilities and performance. The presented approach combines marker-free and molecule-sensitive measurements with cross-section mapping to emphasize the mixing capabilities of different surfaces. As an example of the mixing capabilities on falling films, the mixing of sodium sulfate with tap water is presented, followed by a comparison between a plain surface and a pillow plate. The method relies upon point-by-point Raman imaging with a custom-built high-working-distance, low-depth-of-focus probe. To compensate for the long-time measurements, the continuous plant is in its steady state, which means the local mixing state is constant, and the differences are based on the liquids' position on the falling film, not on time. Starting with two separate streams, the mixing progresses by falling down the surface. In conclusion, Raman imaging is capable of monitoring mixing without any film disturbance and provides detailed information on liquid flow in falling films.

Keywords: Raman spectroscopy; falling film; flow characteristics; marker free; mixing; molecule sensitive; non-contact measurement.

MeSH terms

  • Diagnostic Imaging*
  • Motion Pictures*

Grants and funding

This research received no external funding.