Wearable Smart Fabric Based on Hybrid E-Fiber Sensor for Real-Time Finger Motion Detection

Polymers (Basel). 2023 Jul 3;15(13):2934. doi: 10.3390/polym15132934.

Abstract

Wearable electronic sensors have attracted considerable interest in hand motion monitoring because of their small size, flexibility, and biocompatibility. However, the range of motion and sensitivity of many sensors are inadequate for complex and precise finger motion capture. Here, organic and inorganic materials were incorporated to fabricate a hybrid electronic sensor and optimized and woven into fabric for hand motion detection. The sensor was made from flexible porous polydimethylsiloxane (PDMS) filled with multiwalled carbon nanotubes (MWCNTs). The weight ratios of MWCNTs and geometric characteristics were optimized to improve the hybrid electronic sensor, which showed a high elongation at the breaking point (i.e., more than 100%) and a good sensitivity of 1.44. The strain-related deformation of the PDMS/MWCNT composite network resulted in a variation in the sensor resistance; thus, the strain level that corresponds to different finger motions is be calculated. Finally, the fabricated and optimized electronic sensor in filiform structure with a 6% MWCNT ratio was integrated with smart fabric to create a finger sleeve for real-time motion capture. In conclusion, a novel hybrid E-fiber sensor based on PDMS and MWCNTs was successfully fabricated in the current study with an optimal M/P ratio and structure, and textile techniques were adopted as new packaging approaches for such soft electronic sensors to create smart fabric for wearable and precise detection with highly enhanced sensing performance. The successful results in the current study demonstrate the great potential of such hybrid soft sensors in smart wearable healthcare management, including motion detection.

Keywords: E-fiber sensor; finger motion detection; multiwalled carbon nanotube; polydimethylsiloxane; smart fabric.