A Study of the Phosphorylcholine Polymer Coating of a Polymethylpentene Hollow Fiber Membrane

Polymers (Basel). 2023 Jun 29;15(13):2881. doi: 10.3390/polym15132881.

Abstract

A phosphorylcholine polymer (poly(MPC-co-BMA-co-TSMA), PMBT) was prepared by free radical polymerization and coated on the surface of the polymethylpentene hollow fiber membrane (PMP-HFM). ATR-FTIR and SEM analyses showed that the PMBT polymer containing phosphorylcholine groups was uniformly coated on the surface of the PMP-HFM. Thermogravimetric analysis showed that the PMBT had the best stability when the molar percentage of MPC monomer in the polymer was 35%. The swelling test and static contact angle test indicated that the coating had excellent hydrophilic properties. The fluorescence test results showed that the coating could resist dissolution with 90% (v/v%) ethanol solution and 1% (w/v%) SDS solution. The PMBT coating was shown to be able to decrease platelet adherence to the surface of the hollow fiber membrane, and lower the risk of blood clotting; it had good blood compatibility in tests of whole blood contact and platelet adhesion. These results show that the PMBT polymer may be coated on the surface of the PMP-HFM, and is helpful for improving the blood compatibility of membrane oxygenation.

Keywords: hollow fiber membrane; phosphorylcholine; polymer; surface modification; thermal decomposition.