Mosaic Genome of a British Cider Yeast

Int J Mol Sci. 2023 Jul 7;24(13):11232. doi: 10.3390/ijms241311232.

Abstract

Hybrid formation and introgressions had a profound impact on fermentative yeasts domesticated for beer, wine and cider fermentations. Here we provide a comparative genomic analysis of a British cider yeast isolate (E1) and characterize its fermentation properties. E1 has a Saccharomyces uvarum genome into which ~102 kb of S. eubayanus DNA were introgressed that replaced the endogenous homologous 55 genes of chromosome XIV between YNL182C and YNL239W. Sequence analyses indicated that the DNA donor was either a lager yeast or a yet unidentified S. eubayanus ancestor. Interestingly, a second introgression event added ~66 kb of DNA from Torulaspora microellipsoides to the left telomere of SuCHRX. This region bears high similarity with the previously described region C introgression in the wine yeast EC1118. Within this region FOT1 and FOT2 encode two oligopeptide transporters that promote improved nitrogen uptake from grape must in E1, as was reported for EC1118. Comparative laboratory scale grape must fermentations between the E1 and EC1118 indicated beneficial traits of faster consumption of total sugars and higher glycerol production but low acetic acid and reduced ethanol content. Importantly, the cider yeast strain produced high levels of fruity ester, including phenylethyl and isoamyl acetate.

Keywords: Saccharomyces; domestication; fermentation; hybrid; next-generation sequencing; volatile aroma compounds.

MeSH terms

  • Alcoholic Beverages
  • Beer
  • Fermentation
  • Saccharomyces cerevisiae / genetics
  • Vitis*
  • Wine*

Grants and funding