Review of the Immune Checkpoint Inhibitors in the Context of Cancer Treatment

J Clin Med. 2023 Jun 27;12(13):4301. doi: 10.3390/jcm12134301.

Abstract

Checkpoint proteins are an integral part of the immune system and are used by the tumor cells to evade immune response, which helps them grow uncontrollably. By blocking these proteins, immune checkpoint inhibitors can restore the capability of the immune system to attack cancer cells and stop their growth. These findings are backed by adequate clinical trial data and presently, several FDA-approved immune checkpoint inhibitors exist in the market for treating various types of cancers, including melanoma, hepatocellular, endometrial, lung, kidney and others. Their mode of action is inhibition by targeting the checkpoint proteins CTLA-4, PD-1, PD-L1, etc. They can be used alone as well as in amalgamation with other cancer treatments, like surgery, radiation or chemotherapy. Since these drugs target only specific immune system proteins, their side effects are reduced in comparison with the traditional chemotherapy drugs, but may still cause a few affects like fatigue, skin rashes, and fever. In rare cases, these inhibitors are known to have caused more serious side effects, such as cardiotoxicity, and inflammation in the intestines or lungs. Herein, we provide an overview of these inhibitors and their role as biomarkers, immune-related adverse outcomes and clinical studies in the treatment of various cancers, as well as present some future perspectives.

Keywords: CTLA-4; PD-1; PD-L1; cancer treatment; immune checkpoint inhibitors; neoantigens.

Publication types

  • Review

Grants and funding

This research received no external funding.