Zn-Doped Calcium Magnesium Phosphate Bone Cement Based on Struvite and Its Antibacterial Properties

Materials (Basel). 2023 Jul 4;16(13):4824. doi: 10.3390/ma16134824.

Abstract

The development of magnesium calcium phosphate bone cements (MCPCs) has garnered substantial attention. MCPCs are bioactive and biodegradable and have appropriate mechanical and antimicrobial properties for use in reconstructive surgery. In this study, the cement powders based on a (Ca + Mg)/P = 2 system doped with Zn2+ at 0.5 and 1.0 wt.% were obtained and investigated. After mixing with a cement liquid, the structural and phase composition, morphology, chemical structure, setting time, compressive strength, degradation behavior, solubility, antibacterial activities, and in vitro behavior of the cement materials were examined. A high compressive strength of 48 ± 5 MPa (mean ± SD) was achieved for the cement made from Zn2+ 1.0 wt.%-substituted powders. Zn2+ introduction led to antibacterial activity against Staphylococcus aureus and Escherichia coli strains, with an inhibition zone diameter of up to 8 mm. Biological assays confirmed that the developed cement is cytocompatible and promising as a potential bone substitute in reconstructive surgery.

Keywords: antibacterial properties; bone cement; calcium phosphate; cytocompatibility; magnesium phosphate.