Damage Imaging Identification of Honeycomb Sandwich Structures Based on Lamb Waves

Materials (Basel). 2023 Jun 28;16(13):4658. doi: 10.3390/ma16134658.

Abstract

In the field of structural health monitoring, Lamb Wave has become one of the most widely used inspection tools due to its advantages of wide detection range and high sensitivity. In this paper, a new damage detection method for honeycomb sandwich structures based on frequency spectrum and Lamb Wave Tomography is proposed. By means of simulation and experiment, a certain number of sensors were placed on the honeycomb sandwich plate to stimulate and receive the signals in both undamaged and damaged cases. By Lamb Wave Tomography, the differences of signals before and after damage were compared, and the damage indexes were calculated. Furthermore, the probability of each sensor path containing damage was analyzed, and the damage image was finally realized. The technology does not require analysis of the complex multimode propagation properties of Lamb Wave, nor does it require understanding and modeling of the properties of materials or structures. In both simulation and experiment, the localization errors of the damage conform to the detection requirements, thus verifying that the method has certain feasibility in damage detection.

Keywords: Lamb Wave Tomography; damage detection; honeycomb sandwich structure; imaging.