Cognitive Training Improves Joint Stiffness Regulation and Function in ACLR Patients Compared to Healthy Controls

Healthcare (Basel). 2023 Jun 28;11(13):1875. doi: 10.3390/healthcare11131875.

Abstract

As cognitive function is critical for muscle coordination, cognitive training may also improve neuromuscular control strategy and knee function following an anterior cruciate ligament reconstruction (ACLR). The purpose of this case-control study was to examine the effects of cognitive training on joint stiffness regulation in response to negative visual stimuli and knee function following ACLR. A total of 20 ACLR patients and 20 healthy controls received four weeks of online cognitive training. Executive function, joint stiffness in response to emotionally evocative visual stimuli (neutral, fearful, knee injury related), and knee function outcomes before and after the intervention were compared. Both groups improved executive function following the intervention (p = 0.005). The ACLR group had greater mid-range stiffness in response to fearful (p = 0.024) and injury-related pictures (p = 0.017) than neutral contents before the intervention, while no post-intervention stiffness differences were observed among picture types. The ACLR group showed better single-legged hop for distance after cognitive training (p = 0.047), while the healthy group demonstrated no improvement. Cognitive training enhanced executive function, which may reduce joint stiffness dysregulation in response to emotionally arousing images and improve knee function in ACLR patients, presumably by facilitating neural processing necessary for neuromuscular control.

Keywords: functional joint instability; kinesiophobia; neurocognition; neuromuscular control; neuroplasticity.