Influencing factors of PM2.5 concentration in the typical urban agglomerations in China based on wavelet perspective

Environ Res. 2023 Nov 15;237(Pt 2):116641. doi: 10.1016/j.envres.2023.116641. Epub 2023 Jul 11.

Abstract

PM2.5 is one of the most harmful air pollutants affecting sustainable economic and social development in China. The analysis of influencing factors affecting PM2.5 concentration is significant for the improvement of air quality. In this study, three typical urban agglomerations in China (Beijing‒Tianjin‒Hebei [BTH], the Yangtze River Delta [YRD], and the Pearl River Delta [PRD]) were studied using innovative trend analysis, a Bayesian statistical model, and partial wavelet and multiwavelet coherence to analyze PM2.5 concentration variations and multi-scale coupled oscillations between PM2.5 concentration and air pollutants/meteorological factors. The results showed that: (1) PM2.5 concentration time-series showed significant downward trends, which decreased as follows: BTH > YRD > PRD. The higher the pollution level, the greater the change trend. In BTH and the PRD, PM2.5 had obvious trends and seasonal change points; whereas, the PM2.5 time-series change point in the YRD was not obvious. (2) PM2.5 had significant intermittent resonance cycles with air pollutants and meteorological factors in different time domains. There were differences in the main controlling factors affecting PM2.5 among the three urban agglomerations. (3) The explanatory ability of air pollutant combinations for variations in PM2.5 was higher than that of meteorological factor combinations. However, the synergistic effect of air pollutants/meteorological factors could better explain the PM2.5 concentration variations on all time-frequency scales. The results of this study provide a reference for ecological improvement as well as collaborative governance of air pollution.

Keywords: Air pollution; Bayesian statical model; Innovative trend analysis; Multi-scale coupled oscillations; Multiwavelet coherence; Partial wavelet coherence.