Phenolic secondary metabolites from Acorus calamus (Acorales: Acoraceae) rhizomes: the feeding deterrents for Spodoptera litura (Lepidoptera: Noctuidae)

J Econ Entomol. 2023 Oct 10;116(5):1613-1620. doi: 10.1093/jee/toad135.

Abstract

Spodoptera litura Fabricius (Lepidoptera: Noctuidae) is one of the most destructive pests of various crops cultivated in Thailand. Spodoptera litura larvae, at early stages, attack the leaves and feed on every part of infested crops in later stages. Acorus calamus essential oil contains toxic asarones, which are generalistic cytotoxic compounds. However, the present study is the first attempt to look at safer metabolites from the rhizomes that could deter insect feeding. The objective was to use such compounds as safer residues on crops that would prevent the feeding of herbivorous lepidopterans. Accordingly, phenolic metabolites were isolated and evaluated to establish the feeding deterrence against polyphagous S. litura larvae. Methanol extract of A. calamus, chrysin, and 4-hydroxy acetophenone compounds were the most effective feeding deterrents with FD50 of 87.18, 10.33, and 70.77 µg/cm2, respectively, after 4 h of feeding on treated kale leaves in a no-choice leaf disc assay. Chrysin also reduced carboxylesterase activities (1.37-fold), whereas A. calamus methanol extract reduced glutathione-S-transferase activities (1.44-fold). Some larvae were also seen dead if they consumed the treated kale leaves. Feeding deterrent activity in the methanol extract of A. calamus was due to chrysin and 4-hydroxy acetophenone. The large-scale utilization of such compounds could help develop feeding deterrent strategies in the integrated pest management of lepidopterans.

Keywords: Acorus calamus; Spodoptera litura; 4-hydroxy acetophenone; chrysin; feeding deterrent.