Biomineralization Process of CaCO3 Precipitation Induced by Bacillus mucilaginous and Its Potential Application in Microbial Self-healing Concrete

Appl Biochem Biotechnol. 2024 Apr;196(4):1896-1920. doi: 10.1007/s12010-023-04634-3. Epub 2023 Jul 13.

Abstract

Microbial induced calcium carbonate precipitation (MICP) is widely common in nature, which belongs to biomineralization and has been explored carefully in recent decades. The paper studied the effect of temperature, initial pH value and Ca2+ concentration on bacterial growth and carbonic anhydrase activity, and then revealed the biomineralization process through the changes of Ca2+ concentration and calcification rate in alkali environment. Meanwhile, microbial healing agent containing spores and calcium nitrate was prepared and used for the early age concrete cracks repair. The self-healing efficiency was assessed by crack closure rate and water permeability repair rate. The experimental results showed that when the optimal temperature was 30 °C, the pH was 8.0-11.0, and the optimal Ca2+ concentration was 0-90 mM, the bacteria could grow better and the carbonic anhydrase activity was higher. Compared with reference, the crack closure rate with the crack width up to 0.339 mm could reach 95.62% and the water permeability repair rate was 87.54% after 28 d healing time of dry-wet cycles. XRD analysis showed that the precipitates at the crack mouth were calcite CaCO3. Meanwhile, the self-healing mechanism of mortar cracks was discussed in detail. In particular, there is no other pollution in the whole mineralization process, and the self-healing system is environmentally friendly, which provides a novel idea and method for the application of microbial self-healing concrete.

Keywords: Calcification rate; Carbonic anhydrase; Microbial healing agent; Microbial induced calcium carbonate precipitation; Self-healing concrete.

MeSH terms

  • Bacillus* / metabolism
  • Biomineralization*
  • Calcium Carbonate* / chemistry
  • Calcium Carbonate* / metabolism
  • Chemical Precipitation
  • Construction Materials* / microbiology
  • Hydrogen-Ion Concentration
  • Temperature

Substances

  • Calcium Carbonate