The fate of mamaku gum in the gut: effect on in vitro gastrointestinal function and colon fermentation by human faecal microbiota

Food Funct. 2023 Jul 31;14(15):7024-7039. doi: 10.1039/d3fo01665j.

Abstract

Mamaku is a fern indigenous to the Pacific Islands with a long history of use for therapeutic benefits such as to combat skin conditions and manage gastrointestinal discomfort; however, the scientific understanding is limited. In this study, we examined the effect of mamaku gum, extracted from different age fronds of the New Zealand Black tree fern (Cyathea medullaris, Mamaku) (stage 1: young, stage 2: fully grown and stage 3: old), on gut function using in vitro models of static digestion, enzyme activity and static colonic fermentation. Under simulated gastric and small intestinal conditions, mamaku polysaccharide (MP) was indigestible as there was no decrease in the molecular weight (Mw) of the polymer. Mamaku gum could reduce the activity of digestive enzymes (α-amylase, pepsin and lipase) in a concentration-dependent manner, with the stage 1 sample showing the highest inhibition and stage 3 the lowest. All three mamaku gum samples could also equally bind bile acids during intestinal digestion. During fermentation, human faecal microbiota utilised the mamaku gum and significantly increased the production of total short-chain fatty acids (SCFAs) and reduced the pH when compared with the blank. However, changes in SCFAs and pH for mamaku groups were less prominent than for inulin and guar gum control groups, suggesting lower fermentability of mamaku gum compared to the latter two. Furthermore, mamaku gum altered the composition of colonic microbiota, specifically reducing the ratio of Firmicutes to Bacteroidetes and increasing the relative abundance of Bacteroides, Enterococcus, Paraprevotella and Parabacteroides genera. No obvious difference between mamaku gum samples from stage 1, 2 and 3 was observed during fermentation. Collectively, these results suggest that mamaku gum may modulate the functionality of the host gut by reducing enzyme activity, binding bile acids, altering the colonic microbial composition and producing SCFAs.

MeSH terms

  • Animals
  • Bile Acids and Salts / metabolism
  • Colon / metabolism
  • Digestion
  • Fatty Acids, Volatile* / metabolism
  • Fermentation
  • Humans
  • Microbiota*
  • Rabbits

Substances

  • Fatty Acids, Volatile
  • Bile Acids and Salts