Genome-wide identification and analysis of MIKC-type MADS-box genes expression in Chimonanthus salicifolius

Genes Genomics. 2023 Sep;45(9):1127-1141. doi: 10.1007/s13258-023-01420-7. Epub 2023 Jul 12.

Abstract

Background: MIKC type MADS-box transcription factors are one of the largest gene families and play a pivotal role in flowering time and flower development. Chimonanthus salicifolius belongs to the family Calycanthaceae and has a unique flowering time and flowering morphology compared to other Chimonanthus species, but the research on MIKC type MADS-box gene family of C. salicifolius has not been reported.

Objective: Identification, comprehensive bioinformatic analysis, the expression pattern of MIKC-type MADS-box gene family from different tissues of C. salicifolius.

Methods: Genome-wide investigation and expression pattern under different tissues of the MIKC-type MADS-box gene family in C. salicifolius, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, promoter cis-acting element were performed.

Results: A total of 29 MIKC-type MADS-box genes were identified from the whole genome sequencing. Interspecies synteny analysis revealed more significant collinearity between C. salicifolius and the magnoliids species compared to eudicots and monocots. MIKC-type MADS-box genes from the same subfamily share similar distribution patterns, gene structure, and expression patterns. Compared with Arabidopsis thaliana, Nymphaea colorata, and Chimonanthus praecox, the FLC genes were absent in C. salicifolius, while the AGL6 subfamily was expanded in C. salicifolius. The selectively expanded promoter (AGL6) and lack of repressor (FLC) genes may explain the earlier flowering in C. salicifolius. The loss of the AP3 homologous gene in C. salicifolius is probably the primary cause of the morphological distinction between C. salicifolius and C. praecox. The csAGL6a gene is specifically expressed in the flowering process and indicates the potential function of promoting flowering.

Conclusion: This study offers a genome-wide identification and expression profiling of the MIKC-types MADS-box genes in the C. salicifolius, and establishes the foundation for screening flowering development genes and understanding the potential function of the MIKC-types MADS-box genes in the C. salicifolius.

Keywords: Flower development; Flowering time; Gene expression patterns; Gene family identification.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression
  • Genome, Plant*
  • MADS Domain Proteins* / genetics
  • MADS Domain Proteins* / metabolism
  • Phylogeny
  • Transcription Factors / genetics

Substances

  • MADS Domain Proteins
  • Transcription Factors