A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways

Cell. 2023 Aug 3;186(16):3499-3518.e14. doi: 10.1016/j.cell.2023.06.008. Epub 2023 Jul 11.

Abstract

Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.

Keywords: Chlamydomonas reinhardtii; chloroplast; dual targeting; fluorescent tagging; nucleoid; plastoglobule; protein localization; protein localization prediction; protein-protein interaction; pyrenoid.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biosynthetic Pathways*
  • Chlamydomonas reinhardtii* / metabolism
  • Chloroplast Proteins* / metabolism
  • Chloroplasts / metabolism
  • Photosynthesis

Substances

  • Chloroplast Proteins